LIPIDS AND PHENOLS OF THE LICHEN Parmelia vagans

G. K. Nikonov and N. A. Artamonova

The air-dry lichen <u>Parmelia vagans</u> (Nyl) (2.3 kg) was steeped in petroleum ether (bp 40-70°C). Concentration of the extract yielded a yellow crystalline substance with the composition $C_{18}H_{16}O_7$, mp 204-205 °C, $[\alpha]_D^{2^0}$ +490° (chlf), R_f 0.40 [TLC, Silufol; n-hexane-ethyl acetate (2:1)]. From its IR, UV and PMR spectra, the substance was identified as usnic acid [1]. Yield 0.46%.

When the extract was concentrated further, a lipid fraction (5.2%) was obtained in the form of a viscous golden liquid, n_D^{20} 1.4992, d_4^{20} 0.947, acid No. 2.8 mg KOH/g, saponification No. 191.2 mg KOH/g, iodine No. 127.3% I₂; unsaponifiable substances 5.4%. The lipids were saponified with a 0.5 N solution of KOH in methanol, which gave unsaponifiable (I) and saponifiable (II) fractions.

Fraction (I) was chromatographed on a column of silica gel and was eluted with petroleum ether. This gave 0.214 g of usnic acid (on the dry raw material).

Fraction (II) was methylated [2] and the methyl esters were analyzed by gas-liquid chromatography on a Vyrukhrom instrument with a flame-ionization detector. GLC conditions: steel column 0.4×150 cm filled with Chromaton N-AW (0.20-0.25 mm) upon which 10% of diethyl-eneglycol succinate had been deposited, the temperature of the column being 198°C and that of the evaporator 250°C.

The fatty acids were identified from their retention times with markers [3]. Fatty-acid composition (%): $C_{8:1}-1.2$; $C_{9:0}-0.7$; $C_{10:0}-0.5$; $C_{11:0}-0.3$; $C_{12:0}-0.2$; $C_{x1}-1.3$; $C_{13:0}-0.4$; $C_{14:0}-1.2$; $C_{X_2}-0.3$; $C_{15:0}-0.4$; $C_{15:1}-0.3$; $C_{16:1}-15.7$; $C_{16:1}-1.3$; $C_{17:0}-0.8$; $C_{17:1}-0.6$; $D_{18:0}-5.9$; $C_{18:1}-11.0$; $C_{X_3}-1.6$; $C_{18:2}-47.2$; $C_{x4}-1.2$; $C_{20:0}-4.7$; $C_{20:1}-1.6$; $C_{20:2}-1.2$; $C_{22:1}-0.3$; $C_{22:1}-0.1$. The main acids were linoleic, palmitic, and oleic. The presence of acids with even and odd numbers of carbon atoms is characteristic for <u>Parmelia</u> and other lichens [4].

After petroleum ether, the raw material was treated with acetone and the extract obtained was chromatographed on a column of silica gel, with elution by petroleum ether and then by petroleum ether-chloroform (9:1). The latter eluate yielded yellow-orange crystals with the composition $C_{18}H_{16}O_7$, mp 168-169°C $[\alpha]_D^{20}$ +500° (chlf), R_f 0.55. From its spectral characteristics (UV, IR, PMR, and mass spectra) the substance was identified as isousnic acid [5, 6], detected for the first time in the genus <u>Parmelia</u>.

Thus, the neutral lipids of <u>Parmelia</u> form a complex mixture of substances including usnic, isousnic, and fatty acids.

When the acetone extract was concentrated, a grey precipitate containing labile phenolic compounds was obtained. The fraction was acetylated and chromatographed on silica gel, giving an acetate with the composition $C_{26}H_{20}O_{14}$, mp 223-225°C, UV spectrum v_{max} , nm: 234, 270, 342, and 354 (shoulder), Rf 0.36. Its IR, PMR and mass spectra showed that this substance was depsidone tetraacetate - salazinic acid [7]. The chromatography of the grey precipitate on silica gel with elution by methanol yielded a brown crystalline substance with mp 153-155°C which, according to its UV, IR, and PMR spectra was salazinic acid monorhamnoside.

LITERATURE CITED

1.	V. N. Sviridov and L. I. Strigina, Khim. Prir. Soedin., 88 (1976).
2.	A. G. Vereshchagin, Biokhimiya, <u>23</u> , 721 (1958).
3.	M. Kates, Techniques of Lipidology, American Elsevier, New York (1972).
4.	H. Wagner and H. Friedrich, Naturwissenchaften, <u>50</u> , 305 (1965).
5.	S. Sibata and H. Toguchi, Tetrahedron Lett., No. 48, 4867 (1967).
6.	M. Nuno, Japan. Bot., <u>43</u> , 359 (1968).
7.	E. Erametsa and O. Erametso, Suom. Kem., <u>43</u> , No. 10, 382 (1970).

Institute of Chemical Sciences, Kazakhstan Republic Academy of Sciences, Alma-Ata. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 295-296, March-April, 1993. Original article submitted July 8, 1992.